Listeria monocytogenes is an important foodborne pathogen commonly isolated from food processing environments and food products.
This organism can multiply at refrigeration temperatures, form biofilms on different materials and under various conditions, resist a range of environmental stresses, and contaminate food products by cross-contamination. L. monocytogenes is recognized as the causative agent of listeriosis, a serious disease that affects mainly individuals from high-risk groups, such as pregnant women, newborns, the elderly, and immunocompromised individuals.
Listeriosis can be considered a disease that has emerged along with changing eating habits and large-scale industrial food processing. This disease causes losses of billions of dollars every year with recalls of contaminated foods and patient medical treatment expenses. In addition to the immune status of the host and the infecting dose, the virulence potential of each strain is crucial for the development of disease symptoms. While many isolates are naturally virulent, other isolates are avirulent and unable to cause disease; this may vary according to the presence of molecular determinants associated with virulence.
In the last decade, the characterization of genetic profiles through the use of molecular methods has helped track and demonstrate the genetic diversity among L. monocytogenes isolates obtained from various sources. The purposes of this review were to summarize the main methods used for isolation, identification, and typing of L. monocytogenes and also describe its most relevant virulence characteristics.
The continuous challenge of characterizing the foodborne pathogen Listeria monocytogenes
Foodborne Pathogens and Disease. April 2016, ahead of print. doi:10.1089/fpd.2015.2115.
Camargo Anderson Carlos, Woodward Joshua John, and Nero Luís Augusto