STEC E. coli and biofilm production

The objectives of this study were to characterize the phenotype and genotype of 36 non-O157 Shiga toxin–producing Escherichia coli (STEC) strains isolated from humans, ovines, or bovines, including the top 6 (O26, O45, O103, O111, O121, and O145) and three other serogroups implicated in serious illness (O91, O113, and O128).

e,coli.biofilmBiofilms were formed by all strains with intermediate to strong biofilm producers (n = 24) more common at 22°C than at 37°C (p < 0.001) and 48 and 72 h (p < 0.001) than 24 h of incubation time. Biofilm-forming potential differed by serogroup and origin with O113 and human strains exhibiting the highest potential (p < 0.001). Biofilm-associated genes, csgA/csgD/crl/fimH (100%), flu (94%), rpoS (92%), ehaAα (89%), and cah (72%), were most prevalent, while mlrA (22%) and ehaAβ (14%) were least prevalent, although there was no clear compliment of genes associated with strains exhibiting the greatest biofilm-forming capacity.

Among 12 virulence genes screened, iha and ehxA were present in 92% of the strains. The occurrence of stx1 in the top 6 serogroups (8/12, 67%) did not differ (p = 0.8) from other serogroups (17/24, 71%), but stx2 was less likely (confidence interval [CI] = 0.14–1.12; p = 0.04) to be in the former (9/24, 38%) than the latter (9/12, 75%). Excluding serogroups, O91 and O121, at least one strain per serogroup was resistant to between three and six antimicrobials. Streptomycin (31%), sulfisoxazole (31%), and tetracycline (25%) resistance was most common and was 35–50% less likely (p < 0.05) in human than animal strains.

All non-O157 STEC strains were able to form biofilms on an abiotic surface, with some exhibiting resistance to multiple antimicrobials. Potential as a reservoir of antimicrobial resistance genes may be another hazard of biofilms in food-processing plants. As a result, future strategies to control these pathogens may include measures to prevent biofilms.

Biofilm formation, virulence gene profiles, and antimicrobial resistance of nine serogroups of non-O157 shiga toxin-producing E. coli

Wang, K. Stanford, T.A. McAllister, R.P. Johnson, J. Chen, H. Hou, G. Zhang, and Y.D. Niu

Foodborne Pathogens and Disease, Volume 13, Number 6, March 2016, Pages 1-9, DOI: 10.1089/fpd.2015.2099

http://online.liebertpub.com/doi/abs/10.1089/fpd.2015.2099

 

This entry was posted in E. coli and tagged , , , by Douglas Powell. Bookmark the permalink.

About Douglas Powell

A former professor of food safety and the publisher of barfblog.com, Powell is passionate about food, has five daughters, and is an OK goaltender in pickup hockey. Download Doug’s CV here. Dr. Douglas Powell editor, barfblog.com retired professor, food safety 3/289 Annerley Rd Annerley, Queensland 4103 dpowell29@gmail.com 61478222221 I am based in Brisbane, Australia, 15 hours ahead of Eastern Standard Time