Based on recent risk assessments, up to 83% of listeriosis cases from deli meat in the United States are predicted to be from ready-to-eat deli meats contaminated during processing at retail grocery stores.
Listeria monocytogenes is known to use sanitizer tolerance and biofilm formation to survive, but interplay of these mechanisms along with virulence potential and persistence mechanisms specific to deli environments had yet to be elucidated.
In this study, 442 isolates from food and nonfood contact surfaces in 30 retail delis over 9 months were tested for inlA premature stop codons (PMSCs); inlA encodes InlA, which is necessary to cause listeriosis. A total of 96 isolates, composed of 23 persistent and 73 transient strains, were tested for adhesion and biofilm-forming ability and sanitizer tolerance. Only 10/442 isolates had inlA PMSCs (p<0.001). Strains with PMSCs were not persistent, even in delis with other persistent strains. Most (7/10) PMSC-containing isolates were collected from food contact surfaces (p<0.001); 6/10 PMSC-containing isolates were found in moderate prevalence delis (p<0.05). Persistent strains had enhanced adhesion on day 1 of a 5-day adhesion-biofilm formation assay. However, there was no significant difference in sanitizer tolerance between persistent and transient strains.
Results suggest that foods contaminated with persistent L. monocytogenes strains from the retail environment are (1) likely to have wild-type virulence potential and (2) may persist due to increased adhesion and biofilm formation capacity rather than sanitizer tolerance, thus posing a significant public health risk.
Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons
Foodborne Pathogens and Disease [ahead of print]
Wang Jingjin, Ray Andrea J., Hammons Susan R., and Oliver Haley F.