Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods by using hollow thread-like fibers that filter out the cells, representing a potential new tool for speedier detection.
The machine, called a continuous cell concentration device, could make it possible to routinely analyze food or water samples to screen for pathogens within a single work shift at food processing plants.
“This approach begins to address the critical need for the food industry for detecting food pathogens within six hours or less,” said Michael Ladisch, a distinguished professor of agricultural and biological engineering at Purdue University. “Ideally, you want to detect foodborne pathogens in one work shift, from start to finish, which means extracting the sample, concentrating the cells and detection.”
Findings are detailed in a research paper to appear in November in the journal Applied and Environmental Microbiology. The paper was authored by doctoral student Xuan Li; LORRE research scientist Eduardo Ximenes; postdoctoral research associate Mary Anne Roshni Amalaradjou; undergraduate student Hunter B. Vibbert; senior research engineer Kirk Foster; engineering resources manager Jim Jones; microbiologist Xingya Liu; Arun K. Bhunia, a professor of food microbiology; and Ladisch. Findings showed the system was able to concentrate inoculated salmonella by 500 to 1,000 times the original concentration in test samples.