Seven suspected cases of botulism in Algeria

 Seven people, four adults residing in Batna and three children, were evacuated from the wilaya of Khenchela, with symptoms of botulism are under medical supervision at the resuscitation department of the university hospital center (CHU) of Batna.

cachir-a-la-viande-hachee-fait-maison-charcuterie-049.CR2_Some of these patients have consumed cachir and other rotten pie, whose origin has been identified and whose samples were sent to a lab for analysis.

Gotta cool things: It was the staph (aureus) in food that sickened at least 86 kids at Alabama day cares

Public health officials on Thursday said Staphylococcus aureus was found in samples of food served at Sunnyside Child Care Center’s two locations, Mary McIntyre of the Alabama Department of Public Health said.

IMG_2288 sorenne.food.13Staphylococcus aureus is known for causing food poisoning, skin infections and other medical issues. Children were admitted to local hospitals with vomiting, diarrhea, nausea, cramps and other symptoms Tuesday. Most of the children were between ages 1 and 4.

State health officer Don Williamson has said the food was likely served during an 11 a.m. lunch period and reports of sick children started coming in about 3 p.m. Foods the children were served included bologna, chicken and apples, Williamson said.

Almost 1800 sickened: It’s summer (up north), but beware the water

Outbreaks of illness associated with recreational water use result from exposure to chemicals or infectious pathogens in recreational water venues that are treated (e.g., pools and hot tubs or spas) or untreated (e.g., lakes and oceans).

caddyshackFor 2011–2012, the most recent years for which finalized data were available, public health officials from 32 states and Puerto Rico reported 90 recreational water–associated outbreaks to CDC’s Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS).

The 90 outbreaks resulted in at least 1,788 cases, 95 hospitalizations, and one death. Among 69 (77%) outbreaks associated with treated recreational water, 36 (52%) were caused by Cryptosporidium. Among 21 (23%) outbreaks associated with untreated recreational water, seven (33%) were caused by Escherichia coli (E. coli O157:H7 or E. coli O111). Guidance, such as the Model Aquatic Health Code (MAHC), for preventing and controlling recreational water–associated outbreaks can be optimized when informed by national outbreak and laboratory (e.g., molecular typing of Cryptosporidium) data.

A recreational water–associated outbreak is the occurrence of similar illnesses in two or more persons, epidemiologically linked by location and time of exposure to recreational water or recreational water–associated chemicals volatilized into the air surrounding the water. Public health officials in the 50 states, the District of Columbia, U.S. territories, and Freely Associated States* voluntarily report outbreaks of recreational water–associated illness to CDC. In 2010, waterborne outbreaks became nationally notifiable. This report summarizes data on recreational water–associated outbreaks electronically reported by October 30, 2014 to CDC’s WBDOSS (http://www.cdc.gov/healthywater/surveillance/) for 2011 and 2012 via NORS.† Data requested for each outbreak include the number of cases,§ hospitalizations, and deaths; etiology; setting (e.g., hotel) and venue (e.g., hot tub or spa) where the exposure occurred; earliest illness onset date; and illness type. All outbreaks are classified according to the strength of data implicating recreational water as the outbreak vehicle (1). ¶Outbreak reports classified as Class I have the strongest supporting epidemiologic, clinical laboratory and environmental health data, and those classified as Class IV, the weakest. Classification does not assess adequacy or completeness of investigations.** Negative binomial regression (PROC GENMOD in SAS 9.3 [Cary, NC]) was used to assess trends in the number of outbreaks over time.

For the years 2011 and 2012, public health officials from 32 states and Puerto Rico reported 90 recreational water–associated outbreaks (http://www.cdc.gov/healthywater/surveillance/rec-water-tables-figures.html) (Figure 1), which resulted in at least 1,788 cases, 95 (5%) hospitalizations, and one death. Etiology was confirmed for 73 (81%) outbreaks: 69 (77%) outbreaks were caused by infectious pathogens, including two outbreaks with multiple etiologies, and four (4%) by chemicals (Table). Among the outbreaks caused by infectious pathogens, 37 (54%) were caused by Cryptosporidium. On the basis of data reported to CDC, 37 (41%) of the 90 outbreak reports were categorized as class IV.

Outbreaks associated with treated recreational water accounted for 69 (77%) of the 90 outbreaks reported for 2011–2012, and resulted in at least 1,309 cases, 73 hospitalizations, and one reported death. The median number of cases reported for these outbreaks was seven (range: 2–144 cases). Hotels (e.g., hotel, motel, lodge, or inn) were the setting of 13 (19%) of the treated recreational water–associated outbreaks. Twelve (92%) of these 13 outbreaks started outside of June–August; ten (77%) were at least in part associated with a spa. Among the 69 outbreaks, 36 (52%) were caused by Cryptosporidium. The 69 outbreaks had a seasonal distribution, with 42 (61%) starting in June–August (Figure 1). Acute gastrointestinal illness was the disease manifestation in 34 (81%) of these summer outbreaks, with Cryptosporidium causing 32 (94%) of them. Since 1988, the year that the first U.S. treated recreational water–associated outbreak of cryptosporidiosis was detected (2,3) (Figure 2), the number of these outbreaks reported annually (range: 0–40 outbreaks) has significantly increased (negative binomial regression; p<0.001). Incidence of these cryptosporidiosis outbreaks has also, at least in part, driven the significant increase (negative binomial regression; p<0.001) in the overall number of recreational water–associated outbreaks reported annually (range: 6–84).

caddyshack.pool.poop-1For 2011–2012, 21 (23%) outbreaks were associated with untreated recreational water. These outbreaks resulted in at least 479 cases and 22 hospitalizations. The median number of cases reported for these outbreaks was 16 (range: 2–125). Twenty (95%) of these outbreaks were associated with fresh water; 18 (86%) began in June–August; and seven (33%) were caused by E. coli O157:H7 or O111. One outbreak associated with exposure to cyanobacterial toxins was reported.

Discussion

Cryptosporidium continues to be the dominant etiology of recreational water–associated outbreaks. Half of all treated recreational water–associated outbreaks reported for 2011–2012 were caused by Cryptosporidium. Among treated recreational water–associated outbreaks of gastrointestinal illness that began in June–August, >90% were caused by Cryptosporidium, an extremely chlorine-tolerant parasite that can survive in water at CDC-recommended chlorine levels (1–3 mg/L) and pH (7.2–7.8) for >10 days (4). In contrast, among 14 untreated recreational water–associated outbreaks of gastrointestinal illness starting in June–August, 7% (one) were caused by Cryptosporidium. The decreased diversity of infectious etiologies causing treated recreational water–associated outbreaks is likely a consequence of the aquatic sector’s reliance on halogen disinfection (e.g., chlorine or bromine) and maintenance of proper pH, which are well documented to inactivate most infectious pathogens within minutes (5). Continued reporting of treated recreational water–associated outbreaks caused by chlorine-intolerant pathogens (e.g., E. coli O157:H7 and norovirus) highlights the need for continued vigilance in maintaining water quality (i.e., disinfectant level and pH), as has been recommended for decades (5).

In the United States, codes regulating public treated recreational water venues are independently written and enforced by individual state or local agencies; the consequent variation in the codes is a potential barrier to preventing and controlling outbreaks associated with these venues. In August 2014, CDC released the first edition of MAHC (http://www.cdc.gov/mahc), a comprehensive set of science-based and best-practice recommendations to reduce risk for illness and injury at public, treated recreational water venues. MAHC represents the culmination of a 7-year, multi-stakeholder effort and is an evolving resource that addresses emerging public health threats, such as treated recreational water-associated outbreaks of cryptosporidiosis, by incorporating the latest scientifically validated technologies that inactivate or remove infectious pathogens. For example, MAHC recommends additional water treatment (e.g., ultraviolet light or ozone) to inactivate Cryptosporidium oocysts at venues where WBDOSS data indicate there is increased risk for transmission. MAHC recommendations can be voluntarily adopted, in part or as a whole, by state and local jurisdictions.

The number of reported untreated recreational water–associated outbreaks confirmed or suspected to be caused by cyanobacterial toxins has decreased, from 11 (2009–2010) to one (2011–2012) (6). This decrease is likely the result of a decrease in outbreak reporting rather than a true decrease in incidence. CDC is currently developing a mechanism for reporting algal bloom–associated individual cases through NORS to better characterize their epidemiology.

The findings in this report are subject to at least two limitations. First, the outbreak counts presented are likely an underestimate of actual incidence. Many factors can present barriers to the detection, investigation, and reporting of outbreaks: 1) mild illness; 2) small outbreak size; 3) long incubation periods; 4) wide geographic dispersion of ill swimmers; 5) transient nature of contamination; 6) setting or venue of outbreak exposure (e.g., residential backyard pool); and 7) potential lack of communication between those who respond to outbreaks of chemical etiology (e.g., hazardous materials personnel) and those who usually report outbreaks (e.g., infectious disease epidemiologists). Second, because of variation in public health capacity and reporting requirements across jurisdictions, those reporting outbreaks most frequently might not be those in which outbreaks most frequently occur.

Increasingly, molecular typing tools are being employed to understand the epidemiology of waterborne disease and outbreaks. Most species and genotypes of Cryptosporidium are morphologically indistinguishable from one another, and only molecular methods can distinguish species and subtypes and thereby elucidate transmission pathways (7,8). Systematic national genotyping and subtyping of Cryptosporidium in clinical specimens and environmental samples through CryptoNet (http://www.cdc.gov/parasites/crypto/cryptonet.html) can identify circulating Cryptosporidium species and subtypes and help identify epidemiologic linkages between reported cases. Molecular typing could substantially help elucidate cryptosporidiosis epidemiology in the United States and inform development of future guidance to prevent recreational water–associated and other outbreaks of cryptosporidiosis (9,10).

Acknowledgments

State, territorial, local, and Freely Associated State waterborne disease coordinators, epidemiologists, and environmental health personnel; Lihua Xiao, Sarah A. Collier, Kathleen E. Fullerton, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC.

1Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC; 2Environmental Protection Agency; 3Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.

Corresponding author: Michele C. Hlavsa, mhlavsa@cdc.gov, 404-71

Outbreaks of Illness Associated with Recreational Water — United States, 2011–2012

Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report

Michele C. Hlavsa, MPH; Virginia A. Roberts, MSPH; Amy M. Kahler, MS; Elizabeth D. Hilborn, DVM; Taryn R. Mecher, MPH; Michael J. Beach, PhD; Timothy J. Wade, PhD; Jonathan S. Yoder, MPH

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6424a4.htm?s_cid=mm6424a4_e

1,000 runners fall sick after mud race in France

There’s this fetish for running through mud.

TMSplashI don’t get it.

I’d rather play hockey and have someone shot a puck at my head at 90 mph.

Of the almost 8,400 runners who took part in Mud Day activities on 20 June in Nice on the French Riviera, about 1,000 have been stricken with gastroenteritis. Probably Campylobacter or Salmonella.

86 kids sick from 2 Alabama day cares

The Alabama Department of Public Health is now investigating reports of widespread illness after 86 children, all sharing similar symptoms, were seen at three Montgomery hospitals. The children attended two different day care centers in the area.

daycare_children_pictures_242_op_800x533Thirty children were hospitalized with symptoms of lethargy, nausea, vomiting, diarrhea, and cramps. All but one child has been discharged.

A kitchen at the Sunnyside Child Care Center has recently been closed for the investigation. The kitchen prepares meals for more than 300 children who attend the two day care centers.

Parents whose children attended these day care centers and became ill are advised not to use any day care providers as the investigation continues.

54 now sick: Cyclospora outbreak in Texas

The Texas Department of State Health Services alerted health care providers this week to be on the lookout for cyclospora. The state’s count is at 54 cases.

cyclospora_safThe alert says reports of the illness have been high in Texas each of the past three summers. But state health department spokeswoman Carrie Williams says a surge like the one over the last week is unusual.

Williams says there are no known hospitalizations or deaths related to the illness.

38 children from Alabama daycare hospitalized

So far 38 children from a Montgomery daycare center, all under the age of 10, have come to the Baptist South Medical Center emergency room with foodborne illnesses, and hospital officials anticipate more may be coming in later tonight. So far the hospital has not seen any illnesses that have appeared life-threatening.

sunnyside.daycare“As of about 30 minutes ago, we have admitted eight, and we are opening a unit specifically for these patients,” said hospital spokeswoman Merrill South at a little after 7 p.m. Tuesday night. “There is a possibility more will come in tonight. We really don’t know what that number may look like.”

The children came in exhibiting symptoms of vomiting and diarrhea, but South said while doctors have determined it is a foodborne illness, there is still no diagnosis of what kind of food poisoning is involved.

While it is almost certain that it is something the children ate at Sunny Side Child Care Center, he said foodborne illnesses cover a large number of causes, and until they determine what the cause was it is difficult to speculate on the possible severity.

 

42 sick: Cyclospora outbreak in Texas

My aunt contracted Cyclospora from basil in Florida about a decade ago.

It’s not fun.

pesto.basil.cyclosporaThe Austin/Travis County Health and Human Services Department is investigating an outbreak of Cyclospora, an intestinal illness caused by a microscopic parasite.

As of today, the department has 15 confirmed and probable cases and 11 new cases that are currently under investigation. Within the past week, 42 cases of Cyclospora infection have been reported to the Texas Department of State Health Services.

Cyclospora is spread by people ingesting something – such as food or water – that was contaminated with feces (stool). Cyclospora needs time (days to weeks) after being passed in a bowel movement to become infectious for another person. Therefore, it is unlikely that Cyclospora is passed directly from one person to another.

In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce including berries and leafy greens. At this time, no particular food item has been identified. It is recommended that residents thoroughly wash fresh produce.

Washing doesn’t do much.

Sucking air out of a baggie containing raw chicken is beyond dumb

State-sponsored jazz, NPR, says it’s getting crafty in the kitchen this summer.

bird.bag.sous.videIt’s another triumph of food porn over food safety.

In a story about making magically moist sous vide chicken without the fancy equipment, chef Christina Tosi says consumers can cook chicken with a spiced-buttermilk sauce sous-vide, in just 5 to 20 minutes, with a Ziploc bag.

Judge the recipe for yourselves:

You’ll need a chicken breast or boneless thigh, seasoning of your choice (either salt and pepper or a spice blend), buttermilk (or even bottled ranch dressing), a heavy-duty zip-top freezer bag, and a straw.

  1. Butterfly the chicken breast, or pound it flat, and season.
  2. Put a butterflied chicken breast in a plastic freezer bag with the buttermilk (or ranch).
  3. Seal the bag except for one corner. Insert a straw into the remaining hole and slowly suck out the air with your mouth. Be careful not to suck the sauce into your mouth! Seal the bag to get it as air-free as possible.

Wait, what?

Sucking air out of a bag of Salmonella and Campylobacter is a terrible idea.

And have those zip-lock bags been designed to work at the unspecified higher temperature?

  1. Optional: If you are using thinner storage bags, repeat the process in a second bag, to prevent leaks.
  2. Bring a pot of water nearly to a boil. Set a piece of tin foil in the pot like a hammock (with the ends crimped over the edge).
  3. Plop the bag into the pot of hot — but not boiling — water. The foil will suspend the bag above the bottom of the pot so the bag doesn’t burn.
  4. If the chicken is thin, it will cook (poach, essentially), in five or 10 minutes. An intact chicken breast may take 20 minutes.

You can test the chicken by looking and feeling to make sure it isn’t pink inside.

Wait, what? Color is a lousy indicator. The chicken needs to be temped with a tip-sensitive digital thermometer.

I can’t wait for the next installment.

Chlamydia in women gutting chickens in France

Eight cases of psittacosis due to Chlamydia psittaci were identified in May 2013 among 15 individuals involved in chicken gutting activities on a mixed poultry farm in France.

Chlamydia psittaciAll cases were women between 42 and 67 years-old. Cases were diagnosed by serology and PCR of respiratory samples. Appropriate treatment was immediately administered to the eight hospitalised individuals after exposure to birds had been discovered. In the chicken flocks, mainly C. gallinacea was detected, a new member of the family Chlamydiaceae, whereas the ducks were found to harbour predominantly C. psittaci, the classical agent of psittacosis. In addition, C. psittaci was found in the same flock as the chickens that the patients had slaughtered. Both human and C. psittaci-positive avian samples carried the same ompA genotype E/B of C. psittaci, which is widespread among French duck flocks.

Repeated grassland rotations between duck and chicken flocks on the farm may explain the presence of C. psittaci in the chickens. Inspection by the veterinary service led to temporary closure of the farm. All birds had to be euthanised on site as no slaughterhouses accepted processing them. Farm buildings and grasslands were cleaned and/or disinfected before the introduction of new poultry birds.

Outbreak of Psittacosis in a Group of Women Exposed to Chlamydia Psittaci-Infected Chickens

Eurosurveillance, Volume 20, Issue 24, 18 June 2015

K Laroucau, R Aaziz, L Meurice, V Servas, I Chossat, H Royer, B de Barbeyrac, V Vaillant, J L Moyen, F Meziani, K Sachse, P Rolland

http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21155